Kelas12 Matematika Wajib Jika m dan n adalah dua bilangan bulat, berapakah 2m - 5n (1) 2" "m (2) 5n? Upload Soal Soal Bagikan Jika m dan n adalah dua bilangan bulat, berapakah 2m - 5n (1) m-n=5 m −n = 5 (2) \frac {m} {n}=\frac {7} {2} nm = 27 Jawaban Expand Kamu merasa terbantu gak, sama solusi dari ZenBot?
Mahasiswa/Alumni Universitas Negeri Yogyakarta08 Februari 2022 1542Halo Nadya, kakak bantu jawab ya Jawaban A Pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup Pembahasan Diketahui bahwa m dan n merupakan bilangan bulat positif. Pertanyaannya apakah m - n kelipatan 5? Pernyataan 1 m - n kelipatan 10, jika suatu bilangan kelipatan 10 maka bilangan tersebut juga kelipatan 2 dan kelipatan 5. Pernyataan 2 n kelipatan 5, untuk menjawab m - n juga kelipatan 5 sangatlah tergantung pada nilai m. Dengan demikian, jawaban yang benar adalah opsi A berupa pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Semoga membantu ya daridua buah bilangan bulat. • Euclid, penemu algoritma Euclidean, adalah seorang matematikawan Yunani yang menuliskan algoritmanya tersebut dalam bukunya yang terkenal, Element. • Diberikan dua buah bilangan bulat tak-negatif m dan n (m ≥ n). Algoritma Euclidean berikut mencari pembagi bersama terbesar dari m dan n. Algoritma Euclidean 1.
PembahasanJawaban yang benar untuk pertanyaan tersebut adalah C Ingat! Nilai minimum tercapai ketika turunan pertama bernilai 0 p ′ = 0 Perhatikan perhitungan berikut ini! 3 m − n n ​ = = ​ 60 3 m − 60 ​ Substitusi n pada persamaan , diperoleh p ​ = = ​ m 2 + n 2 m 2 + 3 m − 60 2 ​ Nilai minimum tercapai saat p ′ 2 m + 2 ⋅ 3 m − 60 ⋅ 3 2 m + 6 3 m − 60 2 m + 18 m − 360 20 m − 360 20 m m ​ = = = = = = = ​ 0 0 0 0 0 360 18 ​ Sehingga, nilai minium dari yaitu p ​ = = = = = = ​ m 2 + 3 m − 60 1 8 2 + 3 18 − 60 2 324 + 54 − 60 2 324 + − 6 2 324 + 36 360 ​ Oleh karena itu, jawaban yang benar adalah yang benar untuk pertanyaan tersebut adalah C Ingat! Nilai minimum tercapai ketika turunan pertama bernilai Perhatikan perhitungan berikut ini! Substitusi pada persamaan , diperoleh Nilai minimum tercapai saat Sehingga, nilai minium dari yaitu Oleh karena itu, jawaban yang benar adalah C.
Duabilangan bulat m dan n memenuhi hubungan 3m−n= Pertanyaan Dua bilangan bulat dan memenuhi hubungan . Nilai minimum dari adalah DR D. Rajib Master Teacher Mahasiswa/Alumni Universitas Muhammadiyah Malang Jawaban terverifikasi Jawaban jawaban yang benar adalah C. Pembahasan Jawaban yang benar untuk pertanyaan tersebut adalah C Ingat!
PembahasanIngat, Penjumlahan pecahan bentuk aljabar Diketahui jika m dan n adalah bilangan bulat positif m 1 ​ + n 1 ​ = 12 5 ​ m 1 ​ + n 1 ​ mn n + m ​ 5 mn 5 mn 5 mn − 12 m m 5 n − 12 m ​ = = = = = = = ​ 12 5 ​ 12 5 ​ 12 n + m 12 n + 12 m 12 n 12 n 5 n − 12 12 n ​ ​ Selanjutnya, kita menentukan nilai dari m yang merupakan bilangan bulat positif, dengan cara mencoba substitusi sembarang bilangan bulat positif n Misal n = 3 ⇒ m = 5 n − 12 12 n ​ = 5 3 − 12 12 3 ​ = 15 − 12 36 ​ = 3 36 ​ = 12 Misal n = 4 ⇒ m = 5 n − 12 12 n ​ = 5 4 − 12 12 4 ​ = 20 − 12 48 ​ = 8 48 ​ = 6 ►Menghitung nilai dari m 2 + n 2 yang terbesar Untuk m = 12 dan n = 3 ⇒ m 2 + n 2 = 1 2 2 + 3 2 = 144 + 9 = 153 Untuk m = 6 dan n = 4 ⇒ m 2 + n 2 = 6 2 + 4 2 = 36 + 16 = 52 Dengan demikian, nilaidari m 2 + n 2 yang terbesar adalah 153 Oleh karena itu, jawaban yang benar adalah B .Ingat, Penjumlahan pecahan bentuk aljabar Diketahui jika dan adalah bilangan bulat positif Selanjutnya, kita menentukan nilai dari yang merupakan bilangan bulat positif, dengan cara mencoba substitusi sembarang bilangan bulat positif Misal ⇒ Misal ⇒ ►Menghitung nilai dari yang terbesar Untuk ⇒ Untuk ⇒ Dengan demikian, nilai dari yang terbesar adalah Oleh karena itu, jawaban yang benar adalah B.

MatematikaSekolah Menengah Atas terjawab Dua bilangan bulat m dan n memenuhi hubungan 2m - n =40. nilai minimum dari p=m2+n2 adalah Iklan Jawaban 4.1 /5 394 MathSolver74 n = 2m - 40 p = m² + n² = m² + (2m - 40)² = 5m² - 160m + 1600 minimum saat p' = 0 10m - 160 = 0 m = 16 n = 32 - 40 = - 8 maka nilai minimumnya: p = 16² + (-8)² = 256 + 64 = 320

BerandaDua bilangan bulat m dan n memenuhi hubungan 2m-n=...PertanyaanDua bilangan bulat m dan n memenuhi hubungan 2m-n=40. Nilai minimum dan P=m 2 +n 2 adalah ....Dua bilangan bulat m dan n memenuhi hubungan 2m-n=40. Nilai minimum dan P=m2+n2 adalah .... 320295280260200AAA. AcfreelanceMaster TeacherMahasiswa/Alumni UIN Walisongo SemarangPembahasanUbah 2m-n=40 ke n=2m-40 subsitusi ke nilai minimum Minimum p' = 0 mencari nilai m Mencari nilai n Maka nilai minimumnnya Oleh karena itu jawabannya adalah AUbah 2m-n=40 ke n=2m-40 subsitusi ke nilai minimum Minimum p' = 0 mencari nilai m Mencari nilai n Maka nilai minimumnnya Oleh karena itu jawabannya adalah A Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!8rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!ZTZelga Trihafsari Nendea Makasih ❤️MaMuchammad alif zakariyyaPembahasan lengkap banget Makasih ❤️©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Diberikandua buah bilangan bulat tak - negatif m dan n (m t n). Algoritma Euclidean berikut mencari pembagi bersama terbesar dari m dan n. Algoritma Euclidean 1. Jika n = 0 maka m adalah PBB( m, n); stop. tetapi jika n z 0, lanjutkan ke langkah 2. 2. Bagilah m dengan n dan misalkan r adalah sisanya. 3.
Dua buah bilangan bulat a dan b dikatakan relatif prima jika PBBa, b = 1. Contoh i 20 dan 3 relatif prima sebab PBB20, 3 = 1ii 7 dan 11 relatif prima karena PBB7, 11 = 1iii 20 dan 5 tidak relatif prima sebab PBB20, 5 = 5 ≠ 1 Dikaitkan dengan kombinasi linier, jika a dan b relatif prima, maka terdapat bilangan bulat m dan n sedemikian sehingga ma + nb = 1 Contoh Bilangan 20 dan 3 adalah relatif prima karena PBB20, 3 = 1 Atau dapat ditulis 2 20 + –13 3 = 1 m = 2, n = –13 Akan tetapi, 20 dan 5 tidak relatif prima karena PBB20,5 = 5 ≠ 1 sehingga 20 dan 5 tidak dapat dinyatakan dalam m 20 + n 5 = 1 Materi Lengkap Silakan baca juga beberapa artikel menarik kami tentang Teori Bilangan, daftar lengkapnya adalah sebagai berikut. Tonton juga video pilihan dari kami berikut ini
MahasiswaAlumni Universitas Negeri Malang Jawaban terverifikasi Pembahasan Asumsikan m + n dan m + p genap, maka ada bilangan bulat k dan l sedemikian sehingga m + n = 2k dan m + p = 2l. Dengan menjumlahkan diperoleh (m + n) + (m + p) = 2k + 2l n + p + 2m = 2 (k + l) n + p = 2 (k + l) - 2m n + p = 2 (k + l - m)
m+ n = 2k + 2i Kemudian, kamu juga butuh sedikit memanipulasi penjumlahan itu agar bisa mendapat bentuk yang diinginkan. m + n = 2k + 2i bisa kita ubah menjadi 2 (k + i), dengan (k + i) juga bilangan bulat. m + n = 2k + 2i = 2 (k + i), dengan (k + i) bilangan bulat. Setelah itu, lanjut deh ke kesimpulan.
utdakd.
  • 355lqwo3aj.pages.dev/368
  • 355lqwo3aj.pages.dev/304
  • 355lqwo3aj.pages.dev/124
  • 355lqwo3aj.pages.dev/133
  • 355lqwo3aj.pages.dev/354
  • 355lqwo3aj.pages.dev/72
  • 355lqwo3aj.pages.dev/336
  • 355lqwo3aj.pages.dev/73
  • 355lqwo3aj.pages.dev/126
  • dua bilangan bulat m dan n